Labor Market Power Berger, Herkenhoff, Mongey (WP, 2019)

Thomas Delemotte

PhD Course: Granularity and Networks ENSAE-CREST

25th April 2019

Thomas Delemotte (PhD)

Agglomeration Economies

Employment by size tier

Percent growth from 2010

source: Brookings, "The Avenue" (blog), 2018

Map

Diverging Trends

Figure 1: Diverging economy-wide national and local concentration trends

source: Rossi-Hansberg, Sarte and Trachter, 2018

Granular Component

Labor Markets and Firms

- Market Segmentation
- Competition and Markups
- Spatial Divergence

Local Labor Market:

Properties:

- (i) workers' attachment (preferences)
- (ii) firms compete strategically

Definition:

- 3-digit NAICS industry (like: "*Printing and Related Support Activities*")
- within a Commuting Zone (like: Minneapolis or Chicago with their surrounding counties)
- => obs. 16.000 markets

Labor Market Concentration

Concentration in the US (1976 - 2014)

Wage-bill Herfindahl:

$$HHI_j^{wn} := \sum_{i \in J} (s_{ij}^{wn})^2$$
, with $s_{ij}^{wn} = rac{w_{ij}n_{ij}}{\sum_{i \in J} w_{ij}n_{ij}}$ (vs. $s_{ij}^n = rac{n_{ij}}{\sum_{i \in J} n_{ij}}$)

B. Inverse Average Herfindahl Index

■ Employment □ Wage-bill ■ Firms (/10)

Thomas Delemotte (PhD)

Labor Market Power

Market-level Average					
		Wage-bill		Employment	
		Н	1/H	Н	1/H
US(LBD)	1976	0.45	5.01	0.43	5.97
	2014	0.45	7.09	0.42	9.07
FRA(DADS)	2005	0.48	6.65	0.47	7.49
		(0.35)	(13.8)	(0.38)	(16.68)
	2015	0.47	6.81	0.46	7.69
		(0.35)	(16.5)	(0.35)	(19.79)
cor: wage		-0.09*	0.22*	-0.09*	0.24*
cor: emp	2015	-0.12*	0.27*	-0.12*	0.26*
cor: wage/emp		0.12*	-0.06*	0.10*	-0.05*

Segmented Labor Markets Model

Workers can move¹:

- (a) Between Markets (either industries, cities or both, at cost θ)
- (b) Within markets across firms (cost η)
- => Frictions. Lower costs implies lower market power.

Oligopsony in each markets with Firms:

- (i) Internalizing their upward sloping labor supply curve
- (ii) Non-atomistic with Cournot competition (on quantity)
- => Firm's equilibrium wage is a size-dependent markdown and profits

¹Following Kennan and Walker (2011) approach

Environment

Agents:

- Representative Household
- Continuum of firms *i*, heterogeneous in:
 - ► localization *j* from a continuum (industry *time* city)
 - productivity $z_i jt$ (from a distribution f(z), location invariant)

=> Granularity resides in the **finite number of firms** within each labor market (will be the source of Market Power)

=> Other quantities are "continuum"

Production function and Problems of the household

Production function:

 $y_{ijt} = Z z_{ijt} (k_{ijt}^{1-\gamma} n_{ijt}^{\gamma})^{lpha}$, with $\gamma \in (0,1)$ (share) and lpha > 0 (scale)

Representative household:

$$U_0 = \max_{\{n_{ijt}, c_{ijt}, K_{t+1}\}} \sum_{t=0}^{\infty} \beta^t u \big(C_t - \frac{1}{\varphi^{\frac{1}{\varphi}}} \frac{N_t^{1+\frac{1}{\varphi}}}{1+\frac{1}{\varphi}} \big), \ \beta \in (0,1), \ \varphi > 0$$

Where the disutility of labor supply is: $N_t := \left[\int_0^1 N_j t^{\frac{\theta+1}{\theta}}\right]^{\frac{\theta}{\theta+1}} \text{ and } N_{jt} := \left[n_{1jt}^{\frac{\eta+1}{\eta}} + \ldots + n_{M_j jt}^{\frac{\eta+1}{\eta}}\right]^{\frac{\eta}{\eta+1}}$

Thomas Delemotte (PhD)

Firm Side

Inverse labor supply function:

$$w_{ijt} = \varphi^{\frac{1}{\varphi}} \left(\frac{n_{ijt}}{N_{it}}\right)^{\frac{1}{\eta}} \left(\frac{N_{jt}}{N_t}\right)^{\frac{1}{\theta}} N_t^{\frac{1}{\varphi}}$$

Labor demand problem:

$$\pi_{ijt} = \max_{n_{ijt}} Z \tilde{z}_{ijt} n_{ijt}^{\alpha} - w_{ijt} n_{ijt}$$

foc:
$$w_{ijt} = \mu_{ijt} MRLP_{ijt}$$
, with $MRLP := \alpha Z \tilde{z}_{ijt} n_{ijt}^{\alpha-1}$

In the Nash equilibrium, the markdown is determine by the equilibrium elasticity of the firms' labor supply ϵ_{ijt} :

$$\mu_{ijt} = \frac{\epsilon_{ijt}}{\epsilon_{ijt}+1}$$
, with $\epsilon_{ijt} = [\frac{1}{\eta}(1-s^{wn}_{ijt}) + \frac{1}{\theta}s^{wn}_{ijt}]^{-1}$

Graph

Properties:

Local level:

• Larger market shares implies smaller labor supply elasticities and (thus) larger mark-downs:

$$rac{\partial \epsilon_{ij}}{\partial s^{wn}_{ij}} < 0$$
 and (thus) $rac{\partial \mu_{ij}}{\partial s^{wn}_{ij}} < 0$

General equilibrium:

- \bullet Allows to determine the labor share as a fonction of θ and η
- A single firm's labor share is proportionate to its markdown
- Provides a closed-form between labor share and concentration (increasing in weighted inverse Hefindahl index)

Equilibrium

Figure 3: Oligopsonistic equilibrium in three labor markets

Two Steps

A. Estimates cross-market (θ) and within-market (η) labor substituability:

$$\epsilon(s_{ijkt}^{wn}) = \frac{\beta^n + \gamma^n s_{ikt}^{wn}}{\beta^w + \gamma^w s_{ikt}^{wn}}$$

with:
$$\frac{d\log(n_{ijkt})}{d\tau_{s(k)t}} = \beta^n + \gamma^n s_{ikt}^{wn}$$
 and $\frac{d\log(w_{ijkt})}{d\tau_{s(k)t}} = \beta^w + \gamma^w s_{ikt}^{wn}$

- **B.** Remaining parameters:
 - Target relevant moments: (a) average firm employment, (b) average earnings per worker, (c) the labor share, and (d) employment-weighted wage-bill Herfindhal

Focus on (my favorite) step: A.

Internal Capital Market

- Transaction costs and the Theory of the Firm: Coase (1937); Williamson (1967)
- Tools to estimate marginal productivity and factor relocation: Giroud and Mueller (2015); Charnoz et al. (2018)

Estimation

- Tax changes: within state between commuting zones
- Regress employment and wages according to tax changes time market share (pass-through) with firm fixed effect
- Discuss short and longer term adjustment (select long one)

Counter factual

Labor Market Power (two sources)

- Firms internalize upward slopping labor supply
- Non-atomistic and so competing strategically (Cournot)

Competitive equilibrium (counter factual model)

- Firms internalize upward slopping labor supply
- Non-atomistic but behave as atomistic price taker
- => Estimate the impact of Market Segmentation

Grap

Labor Markets and Firms: what's next?

- System of cities with unemployment (Gaubert, 2018)
- Disentangling occupation from spatial substistuability (frictions) (Traiberman et al., 2017; Schmutz and Sidibé, 2018)
- Enlighten sectoral to functional and local to national concentration (Duranton and Puga, 2005; Rossi-Hansberg et al., 2018)
- Uses counterfactual to estimate how market segmentation matters for macro-study. Compare national and local trends Autor et al., 2017).

- Autor, David, David Dorn, Lawrence F Katz, Christina Patterson, John Van Reenen et al., "Concentrating on the Fall of the Labor Share," *American Economic Review*, 2017, *107* (5), 180–85.
- **Berger, David W, Kyle F Herkenhoff, and Simon Mongey**, "Labor Market Power," Technical Report, National Bureau of Economic Research 2019.
- **Charnoz, Pauline, Claire Lelarge, and Corentin Trevien**, "Communication Costs and the Internal Organisation of Multi-Plant Businesses: Evidence From the Impact of the French High-Speed Rail," *The Economic Journal*, 2018, *128* (610), 949–994.
- **Coase, Ronald Harry**, "The nature of the firm," *Economica*, 1937, 4 (16), 386–405.
- **Duranton, Gilles and Diego Puga**, "From sectoral to functional urban specialisation," *Journal of urban Economics*, 2005, *57* (2), 343–370.

References II

- Gaubert, Cecile, "Firm sorting and agglomeration," American Economic Review, 2018, 108 (11), 3117–53.
- Giroud, Xavier and Holger M Mueller, "Capital and labor reallocation within firms," *The Journal of Finance*, 2015, *70* (4), 1767–1804.
- Kennan, John and James R Walker, "The effect of expected income on individual migration decisions," *Econometrica*, 2011, 79 (1), 211–251.
- Rossi-Hansberg, Esteban, Pierre-Daniel Sarte, and Nicholas Trachter, "Diverging trends in national and local concentration," Technical Report, National Bureau of Economic Research 2018.
- Schmutz, Benoît and Modibo Sidibé, "Frictional spatial equilibrium," The Review of Economic Studies, 2018, (rdy056).
- **Traiberman, Sharon et al.**, "Occupations and Import Competition," in "2017 Meeting Papers" number 1237 Society for Economic Dynamics 2017.
- Williamson, Oliver E, "Hierarchical control and optimum firm size," Journal of political economy, 1967, 75 (2), 123–138.

Thomas Delemotte (PhD)

Labor Market Power

APPENDIX

Spatial Heterogeneity (US)

Counties' contribution to national employment growth

2010-2016

1/2

Spatial Heterogeneity (France)

Carte 2 – Évolution de l'emploi des 25-54 ans entre 2006 et 2013, par aire urbaine

Back

Granular component

Figure 8: The role of top enterprises in national and local concentration trends in diverging industries

source: Rossi-Hansberg, Sarte and Trachter, 2018

Thomas Delemotte (PhD)

ENSAE-CREST 23 / 17

Back

Firm level optimality

Figure 2: Firm level optimality

ENSAE-CREST 24 / 17

Back

Figure 6: Oligopsonistic vs. Competitive equilibrium

<u>Notes:</u> In a *oligopsonistic equilibrium* (Panel A) the firm understands that its marginal cost MC_{ij} is increasing in its employment. In a *competitive equilibrium* (Panel B) the firm perceives that its marginal cost MC_{ij} is simply equal to its wage, which it takes as given.