Lecture 3: The $2 \times 2 \times 2$ Heckscher-Ohlin-Samuelson Model

Gregory Corcos
gregory.corcos@polytechnique.edu
Isabelle Méjean
isabelle.mejean@polytechnique.edu
International Trade Université Paris-Saclay Master in Economics, 2nd year.

21 October 2015

Outline of Lecture 3

- Autarky
- Free Trade Equilibrium: Small Open Economy
- Free Trade Equilibrium: Two-Country World
- The Lerner Diagram
- Duality Tools

Overview

- Different factor endowments, same technologies
- Countries have comparative advantage in sectors using their abundant factors intensively
- They gain from trade by reallocating output to comparative advantage sectors
- The HOS model provides answers to 4 questions:
($\mathrm{H}-\mathrm{O}$) what is the pattern of trade?
(FPE) how does trade affect factor prices?
(S-S) if prices change, how do factor prices change?
(R) if endowments change, how do outputs change?

Assumptions

- 2 goods (1 and 2), 2 factors (K and L), 2 countries (H and F)
- Same technology in both countries: $y_{i}=f_{i}\left(K_{i}, L_{i}\right)$ with $f(\cdot)$ increasing, concave, and linearly homogenous (CRS).
- Factors are fully mobile across sectors and fully immobile across countries.
- Perfectly competitive goods and factor markets.
- Identical convex and homothetic preferences in both countries.
- Firms maximize profits at market prices.

$$
\begin{aligned}
\max _{K_{i}, L_{i}}\left\{p_{i} f_{i}\left(K_{i}, L_{i}\right)-r K_{i}-w L_{i}\right\} \Rightarrow & p_{i} \frac{\partial f_{i}}{\partial K_{i}}=r \\
& p_{i} \frac{\partial f_{i}}{\partial L_{i}}=w
\end{aligned}
$$

- At the optimum, the Marginal Rate of Technological Substitution is equal to the relative factor price:

$$
M R T S_{i} \equiv \frac{\frac{\partial f_{i}}{\partial K_{i}}}{\frac{\partial f_{i}}{\partial L_{i}}}=\frac{w}{r}, i=1,2
$$

- Due to the CRS assumption, the optimal K/L ratio does not depend on the scale.

The MRTS is also known as the Technical Rate of Substitution (TRS).

Figure: Optimal input choice minimizes costs subject to a production constraint

- Cost minimization in both sectors defines efficient production plans.
- These efficient plans yield a Production Possibility Frontier.
- The PPF is concave. The Production Possibility Set is convex.

The Marginal Rate of Transformation

- The Marginal Rate of Transformation equals the slope of the PPF.
- It captures the opportunity cost of producing an extra unit of good 1 in units of good 2 .
- At full employment, along the PPF we have $d L_{1}=-d L_{2}$ so that

$$
\frac{d y_{1}}{d y_{2}}=-\frac{\frac{\partial f_{1}}{\partial K_{1}}}{\frac{\partial f_{2}}{\partial K_{2}}}
$$

and similarly

$$
\frac{d y_{1}}{d y_{2}}=-\frac{\frac{\partial f_{1}}{\partial L_{1}}}{\frac{\partial f_{2}}{\partial L_{2}}}
$$

- Profit maximization implies

$$
\left.M R T_{12} \equiv \frac{d y_{1}}{d y_{2}}\right|_{y_{1}, y_{2} \in P P F}=-\frac{p_{2}}{p_{1}}
$$

Autarky Equilibrium Conditions

- Utility maximization (MRS = relative price)

$$
\frac{\frac{\partial U}{\partial x_{1}}}{\frac{\partial U}{\partial x_{2}}}=\frac{p_{2}}{p_{1}}
$$

- Goods markets clearing

$$
x_{i}=f_{i}\left(K_{i}, L_{i}\right), i=1,2
$$

- Cost minimization (MRTS=relative factor price)

$$
\frac{\frac{\partial f_{i}}{\partial K_{i}}}{\frac{\partial i_{i}}{\partial L_{i}}}=\frac{w}{r}, i=1,2
$$

- Factor markets clearing (full employment)

$$
\begin{array}{r}
L_{1}+L_{2}=L \\
K_{1}+K_{2}=K
\end{array}
$$

- Marginal cost pricing (zero-profit condition)

$$
p_{i} y_{i}=w L_{i}+r K_{i}, i=1,2
$$

Figure: Autarky equilibria in two countries that have identical technologies and preferences, but different factor endowments.

Free Trade Equilibrium

- We consider the polar case of free and costless trade: prices are equal everywhere.
- We take a two-step approach to derive the free trade equilibrium:
- small-open economy (SOE), where exogenous world prices apply
- two-country world: endogenous prices, world goods markets clear

Free Trade Equilibrium: Small Open Economy

- Prices p_{1} and p_{2} are exogenously given.
- Cost minimization (MRTS=relative factor price)

$$
\frac{\frac{\partial f_{i}}{\partial K_{i}}}{\frac{\partial f_{i}}{\partial L_{i}}}=\frac{w}{r}, i=1,2
$$

- Factor markets clearing (full employment)

$$
\begin{array}{r}
L_{1}+L_{2}=L \\
K_{1}+K_{2}=K
\end{array}
$$

- Marginal cost pricing (zero profit)

$$
p_{i}=w L_{i}+r K_{i}, i=1,2
$$

Free Trade Equilibrium: Small Open Economy

- Define $a_{v i}(w, r), i=1,2, v=K, L$ and $c_{i}(w, r)$ such that

$$
c_{i}(w, r)=\min _{L_{i}, K_{i}}\left\{w L_{i}+r K_{i}: f_{i}\left(K_{i}, L_{i}\right) \geq 1\right\} \equiv w_{L i}(w, r)+r a_{K i}(w, r)
$$

- Then a SOE free trade equillbrium satisfies:
- Factor markets clearing (full employment)

$$
\begin{align*}
a_{L 1}(w, r) y_{1}+a_{L 2}(w, r) y_{2} & =L \\
a_{L 2}(w, r) y_{1}+a_{K 2}(w, r) y_{2} & =K \tag{FE}
\end{align*}
$$

- Marginal cost pricing (zero profit)

$$
\begin{align*}
& p_{1}=c_{1}(w, r) \\
& p_{2}=c_{2}(w, r) \tag{ZP}
\end{align*}
$$

- (FE)-(ZP) form a system of 4 equations in 4 unknowns: w, r, y_{1}, y_{2}.

Free Trade Equilibrium: Small Open Economy

Lemma (Factor Price Insensitivity)

$(Z P)$ has a unique solution $\{w, r\}$ that depends only on prices $\left\{p_{1}, p_{2}\right\}$, not endowments $\{K, L\}$ if:

- both sectors produce ('diversification')
- technologies do not exhibit Factors Intensity Reversals (FIR's), e.g. $\frac{a_{L 1}(w, r)}{a_{K 1}(w, r)}>\frac{a_{L 2}(w, r)}{a_{K 2}(w, r)}, \forall w, r$
- Plugging the unique $\{w, r\}$ in (FE) yields $\left\{y_{1}, y_{2}\right\}$.
- Factor prices are 'insensitive' to endowments:
- this would not hold in a one-sector economy, e.g. extra L supply would require a fall in w to be 'absorbed'
- in a two-sector economy, the extra L is 'absorbed' at the same w by reallocating output towards the L-intensive sector.

Figure: Equilibrium factor prices without (left) and with (right) Factor Intensity Reversals. The tangent to the isocost curve has slope $\frac{a_{L i}(w, r)}{a_{k i}(w, r)}$.

Factor Price Equalization

Theorem (Factor Price Equalization)

Under the same prices and technologies, if both goods are produced and FIR's do not occur, then a small open economy has the same factor prices as the rest of the world.

- From the Lemma: if the SOE and the ROW have the same (ZP) and there is a unique solution $\{w, r\}$, then it must be the same.
- Note that factor prices are equalized without any cross-border factor movements.

Comparative Statics: Changes in Product Prices

Totally differentiating (ZP) yields:

$$
d p_{i}=a_{L i} d w+a_{K i} d r \Rightarrow \underbrace{\frac{d p_{i}}{p_{i}}}_{\hat{p}_{i}}=\underbrace{\frac{w a_{L i}}{c_{i}}}_{\theta_{i L}} \underbrace{\frac{d w}{w}}_{\tilde{w}}+\underbrace{\frac{r a_{K i}}{c_{i}}}_{\theta_{i K}} \underbrace{\frac{d r}{r}}_{\hat{r}}
$$

Denoting by Θ the cost share matrix:

$$
\left.\left|\begin{array}{c}
\hat{p_{1}} \\
\hat{p_{2}}
\end{array}\right|=\left|\begin{array}{cc}
\theta_{1 L} & \theta_{1 K} \\
\theta_{2 L} & \theta_{2 K}
\end{array}\right|\left|\begin{array}{c}
\hat{w} \\
\hat{r}
\end{array}\right| \Rightarrow\left|\begin{array}{c}
\hat{w} \\
\hat{r}
\end{array}\right|=\frac{1}{|\Theta|}\left|\begin{array}{cc}
\theta_{2 K} & -\theta_{1 K} \\
-\theta_{2 L} & \theta_{1 L}
\end{array}\right| \right\rvert\, \begin{gathered}
\hat{p_{1}} \\
\hat{p_{2}}
\end{gathered}
$$

Theorem (Stolper-Samuelson, 1941)

A rise in the relative price of a good will increase the real return to the factor used intensively in that good, and reduce the real return of the other factor.

For example if 1 is labor-intensive then $\theta_{1 L}-\theta_{2 L}>0$ and:

$$
\hat{w}>\hat{p_{1}}>\hat{p_{2}}>\hat{r}
$$

Comparative Statics: Changes in Endowments

Rewriting and totally differentiating (FE):

$$
a_{v 1} d y_{1}+a_{v 2} d y_{2}=d V_{v}, v=K, L
$$

Denote factor shares by $\lambda_{i v}=\frac{y_{i} a_{v i}}{v_{v}}$ and the factor share matrix by Λ :

$$
\left|\begin{array}{c}
\hat{L} \\
\hat{K}
\end{array}\right|=\left|\begin{array}{cc}
\lambda_{1 L} & \lambda_{2 L} \\
\lambda_{1 K} & \lambda_{2 K}
\end{array}\right|\left|\begin{array}{c}
\hat{y_{1}} \\
\hat{y_{2}}
\end{array}\right| \Rightarrow\left|\begin{array}{c}
\hat{y_{1}} \\
\hat{y_{2}}
\end{array}\right|=\frac{1}{|\Lambda|}\left|\begin{array}{cc}
\lambda_{2 K} & -\lambda_{2 L} \\
-\lambda_{1 K} & \lambda_{1 L}
\end{array}\right|\left|\begin{array}{c}
\hat{L} \\
\hat{K}
\end{array}\right|
$$

Theorem (Rybczynski, 1955)

An increase in a factor endowment will increase the output of the industry using it intensively, and reduce the output of the other industry.

For example suppose that 1 is labour-intensive. Then:

$$
\begin{aligned}
& \hat{L}>0, \hat{K}=0 \Rightarrow \hat{y_{1}}>\hat{L}>0>\hat{y_{2}} \\
& \hat{K}>0, \hat{L}=0 \Rightarrow \hat{y_{2}}>\hat{K}>0>\hat{y_{1}}
\end{aligned}
$$

Rybczynski Lines

Growth in the endowment of one factor creates the 'Rybczynski line':

The Heckscher-Ohlin Theorem

Theorem (Heckscher-Ohlin Theorem)

Each country will export the good that uses its abundant factor intensively.
Sketch of the proof using the Rybczynski theorem:

- Suppose the SOE is labor-abundant relative to the ROW.
- According to the Rybczinski theorem, the relative output in the L-intensive sector (say, sector 1) must be greater than in the ROW.
- National goods markets clearing and identical preferences imply that the relative consumption of good 1 is greater than in the ROW.
- Therefore under autarky the relative price of good 1 is lower than in the ROW.
- As the Home country becomes a SOE, the relative price of good 1 increases which reallocates output towards sector 1, and consumption towards sector 2.

Figure: Labor abundance implies that the Home country will face a higher relative price of good 1 (L-intensive) under free trade, and will start exporting good 1.

Free Trade Equilibrium: Two-Country World

- Consider two countries, Home and Foreign.
- In a two-country world, prices are determined endogenously on world markets.
- The world market clearing condition replaces national market clearing conditions.
- Do the 4 theorems carry over from the SOE case?

The Integrated Economy Approach

- Thought experiment : consider a world economy where both goods and factors can move costlessly.
- Then both goods and factor prices must be equal worldwide.
- Denote by ω the vector of factor prices, $A(\omega)$ the matrix of $a_{v i}(w, r)$'s, y the vector of outputs, p the vector of goods prices and $\alpha(p)$ the budget shares.
- An integrated economy equilibrium (IEE) satisfies

$$
\begin{align*}
p & =A(\omega)^{\prime} \omega \tag{ZP}\\
y & =\alpha(p) \omega^{\prime} V \tag{GM}\\
V & =A(\omega) y \tag{FE}
\end{align*}
$$

- Can free trade in goods replicate an IEE?

The Integrated Economy Approach

- Consider the following definition of a free trade equilibrium

$$
\begin{aligned}
p & =A\left(\omega^{c}\right)^{\prime} \omega^{c}, c=H, F \\
y^{H}+y^{F} & =\alpha(p)\left(w^{H} V^{H}+w^{F} V^{F}\right) \\
V^{c} & =A\left(\omega^{c}\right) y^{c}, c=H, F
\end{aligned}
$$

- Define the FPE set as the set of endowments if v^{H}, v^{F} are such that $\exists\left(y_{1}^{c}, y_{2}^{c}\right) \geq 0, v^{c}=A(\omega) y^{c}, c=H, F$.
- Then it can be shown that a free trade equilibrium replicates the IEE if endowments are in the FPE set.
- If the v 's are in the FPE set, then national FE conditions hold, then the world FE condition holds.
- As factor prices are the same national goods market conditions can be factored as in the world goods market condition.
- The zero profit conditions are the same as in the IEE.
- We can represent this equivalence in a two-country Edgeworth box in endowment space.

Figure: Factor use at a free trade equilibrium. See next slide.

- At the IEE factor prices are equal and both goods are produced.
- Suppose the integrated economy produces good 1 at X and good 2 at Y. OX and OY represent (cost-minimizing) factor use of each sector.
- Is there some (exogenous) distribution of national endowments such that the IEE can be replicated?
- at E , the parallelogram $O Q_{X} Q_{Y} O^{*}$ and its mirror image represents output and factor allocation consistent with full employment, common factor prices
- the same applies to all points in the parallelogram $O X O^{*} Y$
- at point E' country H specializes in the K-intensive good. Outside OXO* Y doesn't hold.
- Factor use embodied in consumption lies on the diagonal (see Appendix).
- if (BB) has slope $-\frac{w}{r}$ then C represents factors embodied in consumption. EC represents implied net factor trade.
- $O X O^{*} Y$ is the 'FPE set' and $O X Y$ the 'cone of diversification'.

The Integrated Economy and the SOE Approach

- When endowments are in the FPE set:
- FPE obtains
- the HO theorem applies: for example if H is K -abundant, then endowments are above the diagonal and H consumes more labor, less capital than it produces.
- the Rybczinski and Stolper-Samuelson results apply as local results, at equilibrium prices.
- When endowments are not in the FPE set, additional conditions are necessary: FIRs, demand functions...

The Lerner Diagram

- In 1952 Abraham Lerner invented a diagram that summarizes the HOS model and its main predictions.
- The diagram, drawn in factor space, plots:
- isovalue curves (not isoquants), i.e. combinations of factors that yield 1 euro's worth of output, at given prices
- isocost curves, i.e. combinations of factors that cost 1 euro at given factor prices
- The tangency points between both curves represents cost-minimizing factor use in each sector.
- For example, an increase in the relative price of capital tilts factor use towards labor.

Figure: One-sector Lerner Diagram: effect of a change in factor prices.

- With 2 sectors, the convex hull in red represents efficient factor use.
- Efficient factor use is consistent with diversification if endowments are in the diversification cone (as in point E).

- Suppose that K increases while L and all prices remain constant.
- Output increases in the K-intensive sector (X) and decreases in the other sector (Y).
- The Rybczyinski result still holds when endowments move outside the diversification cone (output of Y is zero).

- Suppose now that the price of the L-intensive good $\left(p_{Y}\right)$ increases, while p_{X} remains constant.
- The diagram illustrates the Stolper-Samuelson result:
- in nominal terms w rises and r falls, so that $\frac{w}{r}$ rises
- in terms of good X the same holds, since p_{X} remains constant
- in terms of good Y the real rental falls, since r falls and p_{Y} rises
- w rises by more than p_{Y}, as can be seen from $\tilde{w}^{\prime \prime}<\tilde{w}^{\prime}$

Duality

- Cost minimization and expenditure minimization are dual problems to utility maximization and profit maximization, respectively.
- Several results of neoclassical trade theory can be framed as implications of GE theory, using duality concepts.

Additional References:

- Mas-Colell et al. (1995), Microeconomic Theory, Oxford University Press, chapters 3F, 3G, 5C
- Dixit and Norman (1980), Theory of International Trade, Cambridge University Press, chapter 2.

Duality tools

TABLE I
Schematic comparison of the different functions

		(1) Consumption x	(2) Net Imports m	(3) Factor Content of Net Imports M
(1)	Direct utility function	$u(x)$	$U(m, v)=\operatorname{Max}[u(x): F(x-m, v) \leq 0]$	$\bar{O}(M, v)=\operatorname{Max}[u(x): F(x, v+M) \leq 0]$
(2)	maximised subject to:	$p \cdot x \leq I$	$p \cdot m \leq b$	$w \cdot M \leq b$
(3)	\rightarrow Marshallian demand functions	$x(p, I)$	$m(p, b, v)$	$\boldsymbol{M}(w, b, v)$
(4)	\rightarrow Indirect utility function	$V(p, I)=u[x(p, I)]$	$H(p, b, v)=U[m(p, b, v), v]$	$L(w, b, v)=\bar{O}[M(w, b, v), v]$
(5)			$=V[p, g(p, v)+b]$	$=H[c(w), b, v]$
(6)	\rightarrow Roy's Identity	$V_{p}(p, I)=-V_{t}(p, I) x(p, I)$	$H_{p}(p, b, v)=-H_{b}(p, b, v) m(p, b, v)$	$L_{\sim}(w, b, v)=-L_{b}(w, b, v) M(w, b, v)$
(7)	Expenditure function	$e(p, u)=\operatorname{Min}_{x}[p \cdot x: u(x) \geqq u]$	$E(p, u, v)=\operatorname{Min}_{m}[p \cdot m: U(m, v) \geqq u]$	$E(w, u, v)=\operatorname{Min}_{M}[w \cdot M: O(M, v) \geqq u]$
(8)	\rightarrow Hicksian demand functions	$c_{p}(p, u)=x^{c}(p, u)$	$E_{p}(p, \mu, v)=m^{c}(p, \mu, v)$	$E_{v}(w, u, v)=M^{(}(w, u, v)$
(9)	"Slutsky Identity"	$x^{c}(p, u)=x[p, e(p, u)]$	$m^{c}(p, u, v)=m[p, E(p, u, v), v]$	$M^{2}(w, u, v)=M[w, E(w, u, v), v]$
(10)	\rightarrow Slutsky equation	$x_{p}^{e}=x_{p}+x_{p} x^{\prime}$	$m_{p}^{c}=m_{p}+m_{b} m^{\prime}$	$M_{\sim}^{\epsilon}=M_{\sim}+M_{b} M^{\prime}$

The Supply Side

Consider a country in autarky. Assume perfectly competitive product and factor markets and CRS.

- Denote by V the endowment vector and $y(V)$ the vector of increasing and concave production functions.
- Denote by $g(p, V)$ the GDP function:

$$
g(y(p, V))=p \cdot y(p, V)=\max \{p \cdot y: \mathrm{y} \text { is feasible given } v\}
$$

- Graphically $g(\cdot)$ is the 'level' of a tangent to the PPF.
- Profit maximization implies that the MRT equals the relative price.
- So GDP is maximal and $g(\cdot)$ describes GDP in autarky.

Properties of $g(p, V)$

Assume $g(p, V)$ is twice differentiable in both arguments.

- g is homogenous of degree 1 in p : if all prices rise proportionally, optimal output remains constant and GDP rises proportionally.
- g is homogenous of degree 1 in v : if all factor endowments rise proportionally, optimal input use remains constant and costs rise proportionally.
- Euler theorem: $\frac{\partial g}{\partial p_{i}}=y_{i}$ and $\frac{\partial g}{\partial V_{v}}=\omega_{v}$.
- g is convex in p : if p increases, either g increases linearly or output is reallocated and g increases by more.
- g is concave in V : marginal productivity of factors is non-increasing.
- Hessian of $g(\cdot)$:

$$
\left.\left|\begin{array}{ll}
g_{p p} & g_{p V} \\
g_{V p} & g_{V V}
\end{array}\right|=\left|\begin{array}{l}
\frac{\partial y}{\partial p} \\
\frac{\partial \omega}{\partial p}
\end{array}\right| \begin{aligned}
& \left\lvert\, \frac{\partial y}{\partial v}\right. \\
& \left|\frac{\partial \omega}{\partial V}\right|
\end{aligned} \right\rvert\,
$$

- $g_{p} V$: Rybczynski derivatives, endowment-output responses $g_{V_{p}}$: Stolper-Samuelson derivatives, price-to-factor-price responses.

The Demand Side

Assume convex and homothetic preferences. Let $e(p, u)$ be the expenditure function and $h^{c}(p, u)$ the compensated demand function. Define $E(p, V, u)$ as the Trade Expenditure Function:

$$
E(p, V, u)=e(p, u)-g(p, V)
$$

Properties of $E(\cdot)$:

- $E_{p}(p, V, u)=e_{p}(p, u)-g_{p}(p, V)=h(p, u)-y(p, V)=m(p, u, V)$, the compensated excess demand function.
- $E(\cdot)$ solves the following program:

$$
\min _{m}\{p \cdot m(p, u, V): \tilde{U}(m, V) \geq u\}
$$

$\tilde{U}(\cdot)$ is called the Meade utility function.

- $E(\cdot)$ is increasing in all its arguments.
- $E(\cdot)$ is concave in p, excess demand functions cannot slope upwards.

Application to the 2 -sector Ricardian model

- The GDP function is written as

$$
g(p, L)=\max _{i}\left\{\sum_{i} p_{i} \frac{L_{i}}{a_{i}}\right\}
$$

- If $\frac{p_{1}}{a_{1}}>\frac{p_{2}}{a_{2}} \Leftrightarrow \frac{p_{1}}{p_{2}}>\frac{p_{1}^{2}}{p_{2}^{2}}$ then Home specializes in 1 , otherwise in 2.
- This implies:

$$
g(p, L)=\max _{i}\left\{\frac{p_{i} L}{a_{i}}\right\} ; \quad g^{*}\left(p, L^{*}\right)=\max _{i}\left\{\frac{p_{i} L^{*}}{a_{i}^{*}}\right\}
$$

- The GDP function is convex in each price, with a kink due to the discontinuity.

The Hotelling and Shepard lemmas imply:

$$
\begin{gathered}
\forall i,\left\{g_{p_{i}}(p, L), g_{p_{i}}^{*}\left(p, L^{*}\right)\right\}=\left\{y_{i}, y_{i}^{*}\right\}=\begin{array}{ll}
\left\{\frac{L}{a_{i}}, 0\right\} & \text { if } a_{i}<a_{i}^{*} \\
\left\{0, \frac{L^{*}}{a_{i}}\right\} & \text { if } a_{i}>a_{i}^{*}
\end{array} \\
g_{L}(p, L)=w=\frac{p_{i}}{a_{i}}, \forall i \\
g_{L^{*}}\left(p, L^{*}\right)=w^{*}=\frac{p_{i}}{a_{i}^{*}}, \forall i
\end{gathered}
$$

Goods and factor market clearing imply:

$$
\begin{aligned}
\left\{y_{i}, y_{i}^{*}\right\} & =\left\{x_{i}(p)+x_{i}^{*}(p), 0\right\} \\
\left\{0, x_{i}(p)+x_{i}^{*}(p)\right\} & \text { if } a_{i}<a_{i}^{*} \\
a^{\prime} \cdot y & =L \\
a^{*^{\prime}} \cdot y^{*} & =L_{i}^{*}
\end{aligned}
$$

Application to the HOS model

$$
\begin{aligned}
g(p, K, L) & =p_{1} f_{1}\left(K_{1}, L_{1}\right)+p_{2} f_{2}\left(K_{2}, L_{2}\right) \\
g^{*}\left(p, K^{*}, L^{*}\right) & =p_{1} f_{1}\left(K_{1}^{*}, L_{1}^{*}\right)+p_{2} f_{2}\left(K_{2}^{*}, L_{2}^{*}\right)
\end{aligned}
$$

The Hotelling and Shepard lemmas imply:

$$
\begin{aligned}
& \forall i,\left\{y_{i}, y_{i}^{*}\right\}=\left\{f_{i}\left(K_{i}, L_{i}\right), f_{i}\left(K_{i}^{*}, L_{i}^{*}\right)\right\} \\
& \forall i,\{w, r\}=\left\{p_{i} a_{L i}(K, L), p_{i} a_{K i}(K, L)\right\} \\
& \forall i,\{w, r\}=\left\{p_{i} a_{L i}^{*}\left(K^{*}, L^{*}\right), p_{i} a_{K i}^{*}\left(K^{*}, L^{*}\right)\right\}
\end{aligned}
$$

Goods and factor market clearing imply:

$$
\begin{aligned}
& \forall i, y_{i}(p)+y_{i}^{*}(p)=x_{i}(p)+x_{i}^{*}(p) \\
& \left|\begin{array}{cc}
a_{L 1} & a_{L 2} \\
a_{K 1} & a_{K 2}
\end{array}\right| \cdot\left|\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right|=\left|\begin{array}{l}
L \\
K
\end{array}\right| \\
& \left|\begin{array}{ll}
a_{L 1} & a_{L 2} \\
a_{K 1} & a_{K 2}
\end{array}\right| \cdot\left|\begin{array}{l}
y_{1}^{*} \\
y_{2}^{*}
\end{array}\right|=\left|\begin{array}{l}
L^{*} \\
K^{*}
\end{array}\right|
\end{aligned}
$$

Gains from Trade

- Autarky and free trade equilibria imply

$$
m^{a}\left(p^{a}, u^{a}\right)=0=m^{f t}\left(p^{f t}, u^{f t}\right)
$$

- Consider $E\left(p^{f t}, u^{a}\right)$. A property of E is that:

$$
E\left(p^{f t}, u^{a}\right) \leq p^{f t} \cdot \bar{m}, \forall \bar{m}: \tilde{U}(\bar{m}) \geq u^{a}
$$

and since $\tilde{U}(\bar{m})=u^{a}$ it must be that:

$$
E\left(p^{f t}, u^{a}\right) \leq p^{f t} \cdot m^{a}
$$

- By expenditure minimization and GDP maximization in autarky

$$
E\left(p^{f t}, u^{a}\right) \leq E\left(p^{a}, u^{a}\right)
$$

- From equilibrium conditions $E\left(p^{a}, u^{a}\right)=E\left(p^{f t}, u^{f t}\right)=0$ we have

$$
E\left(p^{f t}, u^{a}\right) \leq E\left(p^{f t}, u^{f t}\right) \Rightarrow u^{a} \leq u^{f t}
$$

since E is an increasing function of u.

- Under free trade one can reach autarky utility with money to spare.

Conclusions on the $2 \times 2 \times 2$ HOS Model

- General equilibrium trade model with sharp predictions on trade patterns.
- When endowments are in the FPE set, free trade in goods replicates an integrated economy.
- Can the model be generalized to more goods and factors?
- equal number of goods and factors : relatively straightforward
- more goods than factors : the factor content of trade can be predicted despite some indeterminacies
- more factors than goods: too few ZP equations for the number of factor prices, but the model can be solved in special cases (Ricardo-Viner specific factors model).

Appendix: Factor Content of Consumption

- Under homothetic and identical preferences demand takes the form $x^{c}=\alpha(p) Y^{c}, c=H, F$, and the the factor content of each good's consumption takes the form $A^{\prime} \alpha(p) Y^{c}$ in each country c.
- Ex.: if $U\left(x_{1}, x_{2}\right)=x_{1}^{\alpha} x_{2}^{1-\alpha}$ then capital content of consumption in c equals $\left(\frac{a_{1 K} \alpha}{p_{1}}+\frac{a_{2 K}(1-\alpha)}{p_{2}}\right) Y^{c}$
- Comparing capital contents across countries, they are in the same proportion than labor contents and income, e.g.

$$
\frac{\left(\frac{a_{K 1} \alpha}{p_{1}}+\frac{a_{K 2}(1-\alpha)}{p_{2}}\right) Y^{H}}{\left(\frac{a_{K 1} \alpha}{p_{1}}+\frac{a_{K 2}(1-\alpha)}{p_{2}}\right) Y^{F}}=\frac{\left(\frac{a_{L 1} \alpha}{p_{1}}+\frac{a_{L 2}(1-\alpha)}{p_{2}}\right) Y^{H}}{\left(\frac{a_{L 1} \alpha}{p_{1}}+\frac{a_{L 2}(1-\alpha)}{p_{2}}\right) Y^{F}}=\frac{Y^{H}}{Y^{F}}
$$

- From (FE) they must be in the same proportion as world endowments, hence on the diagonal of the FPE set.

Appendix: Gains From Trade

- Traditional gains from trade argument:

$$
\begin{aligned}
& e\left(p^{f t}, u^{a}\right) \leq\left(p^{f t}\right)^{\prime} c^{a} \\
& \left(p^{f t}\right)^{\prime} c^{a}=\left(p^{f t}\right)^{\prime} y^{a} \\
& \left(p^{f t}\right)^{\prime} y^{a} \leq\left(p^{f t}\right)^{\prime} y^{f t} \\
& \left(p^{f t}\right)^{\prime} y^{f t}=\left(p^{f t}\right)^{\prime} c^{f t}=e\left(p^{f t}, u^{f t}\right) \\
& \Rightarrow e\left(p^{f t}, u^{a}\right) \leq e\left(p^{f t}, u^{f t}\right) \Rightarrow u^{a} \leq u^{f t}
\end{aligned}
$$

expenditure min.
GM clearing in autarky
GDP max.
trade balance, expenditure min.
e increasing in u

- Trade Expenditure formulation $E(p, u, V) \equiv e(p, u)-g(p, V)$

$$
\begin{aligned}
& E\left(p^{f t}, u^{a}\right)=\left(p^{f t}\right)^{\prime} m\left(p^{f t}, u^{a}, V\right) \\
& \left(p^{f t}\right)^{\prime} m\left(p^{f t}, u^{a}, V\right) \leq\left(p^{f t}\right)^{\prime} m\left(p^{a}, u^{a}, V\right) \\
& \left(p^{f t}\right)^{\prime} m\left(p^{a}, u^{a}, V\right) \leq\left(p^{a}\right)^{\prime} m\left(p^{a}, u^{a}, V\right) \\
& \left(p^{a}\right)^{\prime} m\left(p^{a}, u^{a}, V\right)=0=\left(p^{f t}\right)^{\prime} m\left(p^{f t}, u^{f t}, V\right) \\
& \Rightarrow E\left(p^{f t}, u^{a}\right) \leq E\left(p^{f t}, u^{f t}\right) \Rightarrow u^{a} \leq u^{f t}
\end{aligned}
$$

Euler theorem, $E_{p}=m$ property of $\mathrm{E}, \tilde{U}\left(m^{a}\right)=u^{a}$ expenditure min., GDP max. GM clearing, trade balance E increasing in u

- Inequalities are weak because IC or PPF may not be strictly convex.

